Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Immunol ; 9(93): eade6256, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457513

RESUMO

Programmed cell death-1 (PD-1) is a potent immune checkpoint receptor on T lymphocytes. Upon engagement by its ligands, PD-L1 or PD-L2, PD-1 inhibits T cell activation and can promote immune tolerance. Antagonism of PD-1 signaling has proven effective in cancer immunotherapy, and conversely, agonists of the receptor may have a role in treating autoimmune disease. Some immune receptors function as dimers, but PD-1 has been considered monomeric. Here, we show that PD-1 and its ligands form dimers as a consequence of transmembrane domain interactions and that propensity for dimerization correlates with the ability of PD-1 to inhibit immune responses, antitumor immunity, cytotoxic T cell function, and autoimmune tissue destruction. These observations contribute to our understanding of the PD-1 axis and how it can potentially be manipulated for improved treatment of cancer and autoimmune diseases.


Assuntos
Doenças Autoimunes , Neoplasias , Humanos , Receptor de Morte Celular Programada 1 , Tolerância Imunológica , Ativação Linfocitária , Domínios Proteicos
2.
Methods Mol Biol ; 2654: 137-147, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37106180

RESUMO

Imaging of the immunological synapse (IS) between dendritic cells (DCs) and T cells in suspension is hampered by suboptimal alignment of cell-cell contacts along the vertical imaging plane. This requires optical sectioning that often results in unsatisfactory resolution in time and space. Here, we present a workflow where DCs and T cells are confined between a layer of glass and polydimethylsiloxane (PDMS) that orients the cells along one, horizontal imaging plane, allowing for fast en-face-imaging of the DC-T cell IS.


Assuntos
Sinapses Imunológicas , Linfócitos T , Células Dendríticas , Ativação Linfocitária
3.
Elife ; 112022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35881547

RESUMO

A key attribute of persistent or recurring bacterial infections is the ability of the pathogen to evade the host's immune response. Many Enterobacteriaceae express type 1 pili, a pre-adapted virulence trait, to invade host epithelial cells and establish persistent infections. However, the molecular mechanisms and strategies by which bacteria actively circumvent the immune response of the host remain poorly understood. Here, we identified CD14, the major co-receptor for lipopolysaccharide detection, on mouse dendritic cells (DCs) as a binding partner of FimH, the protein located at the tip of the type 1 pilus of Escherichia coli. The FimH amino acids involved in CD14 binding are highly conserved across pathogenic and non-pathogenic strains. Binding of the pathogenic strain CFT073 to CD14 reduced DC migration by overactivation of integrins and blunted expression of co-stimulatory molecules by overactivating the NFAT (nuclear factor of activated T-cells) pathway, both rate-limiting factors of T cell activation. This response was binary at the single-cell level, but averaged in larger populations exposed to both piliated and non-piliated pathogens, presumably via the exchange of immunomodulatory cytokines. While defining an active molecular mechanism of immune evasion by pathogens, the interaction between FimH and CD14 represents a potential target to interfere with persistent and recurrent infections, such as urinary tract infections or Crohn's disease.


Assuntos
Infecções por Escherichia coli , Escherichia coli Uropatogênica , Adesinas de Escherichia coli/química , Adesinas de Escherichia coli/genética , Adesinas de Escherichia coli/metabolismo , Animais , Infecções por Escherichia coli/microbiologia , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Imunidade , Camundongos , Escherichia coli Uropatogênica/fisiologia
4.
Dev Cell ; 57(1): 47-62.e9, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34919802

RESUMO

When crawling through the body, leukocytes often traverse tissues that are densely packed with extracellular matrix and other cells, and this raises the question: How do leukocytes overcome compressive mechanical loads? Here, we show that the actin cortex of leukocytes is mechanoresponsive and that this responsiveness requires neither force sensing via the nucleus nor adhesive interactions with a substrate. Upon global compression of the cell body as well as local indentation of the plasma membrane, Wiskott-Aldrich syndrome protein (WASp) assembles into dot-like structures, providing activation platforms for Arp2/3 nucleated actin patches. These patches locally push against the external load, which can be obstructing collagen fibers or other cells, and thereby create space to facilitate forward locomotion. We show in vitro and in vivo that this WASp function is rate limiting for ameboid leukocyte migration in dense but not in loose environments and is required for trafficking through diverse tissues such as skin and lymph nodes.


Assuntos
Actinas/fisiologia , Leucócitos/fisiologia , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/fisiologia , Proteína 3 Relacionada a Actina/metabolismo , Actinas/metabolismo , Animais , Fenômenos Biomecânicos/fisiologia , Linhagem Celular , Movimento Celular/fisiologia , Proteínas do Citoesqueleto/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica/fisiologia , Proteína da Síndrome de Wiskott-Aldrich/genética
5.
J Cell Biol ; 220(4)2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33533935

RESUMO

Dendritic cells (DCs) are crucial for the priming of naive T cells and the initiation of adaptive immunity. Priming is initiated at a heterologous cell-cell contact, the immunological synapse (IS). While it is established that F-actin dynamics regulates signaling at the T cell side of the contact, little is known about the cytoskeletal contribution on the DC side. Here, we show that the DC actin cytoskeleton is decisive for the formation of a multifocal synaptic structure, which correlates with T cell priming efficiency. DC actin at the IS appears in transient foci that are dynamized by the WAVE regulatory complex (WRC). The absence of the WRC in DCs leads to stabilized contacts with T cells, caused by an increase in ICAM1-integrin-mediated cell-cell adhesion. This results in lower numbers of activated and proliferating T cells, demonstrating an important role for DC actin in the regulation of immune synapse functionality.


Assuntos
Actinas/imunologia , Comunicação Celular/imunologia , Células Dendríticas/imunologia , Sinapses Imunológicas/imunologia , Linfócitos T/imunologia , Actinas/genética , Animais , Adesão Celular/genética , Adesão Celular/imunologia , Comunicação Celular/genética , Proliferação de Células/genética , Feminino , Sinapses Imunológicas/genética , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/imunologia , Masculino , Camundongos , Camundongos Knockout
6.
Nat Immunol ; 19(6): 606-616, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29777221

RESUMO

Although much is known about the physiological framework of T cell motility, and numerous rate-limiting molecules have been identified through loss-of-function approaches, an integrated functional concept of T cell motility is lacking. Here, we used in vivo precision morphometry together with analysis of cytoskeletal dynamics in vitro to deconstruct the basic mechanisms of T cell migration within lymphatic organs. We show that the contributions of the integrin LFA-1 and the chemokine receptor CCR7 are complementary rather than positioned in a linear pathway, as they are during leukocyte extravasation from the blood vasculature. Our data demonstrate that CCR7 controls cortical actin flows, whereas integrins mediate substrate friction that is sufficient to drive locomotion in the absence of considerable surface adhesions and plasma membrane flux.


Assuntos
Actinas/imunologia , Quimiotaxia de Leucócito/imunologia , Antígeno-1 Associado à Função Linfocitária/imunologia , Receptores CCR7/imunologia , Linfócitos T/imunologia , Actinas/metabolismo , Animais , Quimiocinas/imunologia , Quimiocinas/metabolismo , Fricção , Integrinas/imunologia , Integrinas/metabolismo , Linfonodos , Antígeno-1 Associado à Função Linfocitária/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CCR7/metabolismo , Linfócitos T/metabolismo
7.
Eur J Immunol ; 48(6): 1074-1077, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29436709

RESUMO

Estrogen inducible Hoxb8 leads to conditional immortalization of hematopoietic precursors. These cells can be cultured and infected with the CRISPR/Cas9 system for genome editing, circumventing resource consuming generation of mouse models. The resultant cells retain their ability to differentiate into migratory dendritic cells.


Assuntos
Movimento Celular/genética , Células Dendríticas/fisiologia , Engenharia Genética/métodos , Células-Tronco Hematopoéticas/fisiologia , Proteínas de Homeodomínio/genética , Animais , Sistemas CRISPR-Cas , Diferenciação Celular , Linhagem Celular Transformada , Autorrenovação Celular/genética , Estrogênios/metabolismo , Edição de Genes , Humanos , Camundongos , Modelos Animais
8.
Cell Rep ; 19(5): 902-909, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28467903

RESUMO

Trafficking cells frequently transmigrate through epithelial and endothelial monolayers. How monolayers cooperate with the penetrating cells to support their transit is poorly understood. We studied dendritic cell (DC) entry into lymphatic capillaries as a model system for transendothelial migration. We find that the chemokine CCL21, which is the decisive guidance cue for intravasation, mainly localizes in the trans-Golgi network and intracellular vesicles of lymphatic endothelial cells. Upon DC transmigration, these Golgi deposits disperse and CCL21 becomes extracellularly enriched at the sites of endothelial cell-cell junctions. When we reconstitute the transmigration process in vitro, we find that secretion of CCL21-positive vesicles is triggered by a DC contact-induced calcium signal, and selective calcium chelation in lymphatic endothelium attenuates transmigration. Altogether, our data demonstrate a chemokine-mediated feedback between DCs and lymphatic endothelium, which facilitates transendothelial migration.


Assuntos
Quimiocina CCL21/metabolismo , Células Dendríticas/fisiologia , Células Endoteliais/fisiologia , Endotélio Linfático/citologia , Migração Transendotelial e Transepitelial , Animais , Sinalização do Cálcio , Células Dendríticas/metabolismo , Células Endoteliais/metabolismo , Endotélio Linfático/fisiologia , Feminino , Junções Intercelulares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
Curr Biol ; 27(9): 1314-1325, 2017 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-28457871

RESUMO

Navigation of cells along gradients of guidance cues is a determining step in many developmental and immunological processes. Gradients can either be soluble or immobilized to tissues as demonstrated for the haptotactic migration of dendritic cells (DCs) toward higher concentrations of immobilized chemokine CCL21. To elucidate how gradient characteristics govern cellular response patterns, we here introduce an in vitro system allowing to track migratory responses of DCs to precisely controlled immobilized gradients of CCL21. We find that haptotactic sensing depends on the absolute CCL21 concentration and local steepness of the gradient, consistent with a scenario where DC directionality is governed by the signal-to-noise ratio of CCL21 binding to the receptor CCR7. We find that the conditions for optimal DC guidance are perfectly provided by the CCL21 gradients we measure in vivo. Furthermore, we find that CCR7 signal termination by the G-protein-coupled receptor kinase 6 (GRK6) is crucial for haptotactic but dispensable for chemotactic CCL21 gradient sensing in vitro and confirm those observations in vivo. These findings suggest that stable, tissue-bound CCL21 gradients as sustainable "roads" ensure optimal guidance in vivo.


Assuntos
Quimiocina CCL21/metabolismo , Quimiotaxia , Células Dendríticas/metabolismo , Quinases de Receptores Acoplados a Proteína G/fisiologia , Receptores CCR7/metabolismo , Razão Sinal-Ruído , Animais , Rastreamento de Células , Células Dendríticas/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais
10.
Nat Cell Biol ; 18(11): 1253-1259, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27775702

RESUMO

Most migrating cells extrude their front by the force of actin polymerization. Polymerization requires an initial nucleation step, which is mediated by factors establishing either parallel filaments in the case of filopodia or branched filaments that form the branched lamellipodial network. Branches are considered essential for regular cell motility and are initiated by the Arp2/3 complex, which in turn is activated by nucleation-promoting factors of the WASP and WAVE families. Here we employed rapid amoeboid crawling leukocytes and found that deletion of the WAVE complex eliminated actin branching and thus lamellipodia formation. The cells were left with parallel filaments at the leading edge, which translated, depending on the differentiation status of the cell, into a unipolar pointed cell shape or cells with multiple filopodia. Remarkably, unipolar cells migrated with increased speed and enormous directional persistence, while they were unable to turn towards chemotactic gradients. Cells with multiple filopodia retained chemotactic activity but their migration was progressively impaired with increasing geometrical complexity of the extracellular environment. These findings establish that diversified leading edge protrusions serve as explorative structures while they slow down actual locomotion.


Assuntos
Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Movimento Celular/genética , Células Dendríticas/citologia , Leucócitos/citologia , Actinas/metabolismo , Animais , Camundongos , Camundongos Knockout , Polimerização , Pseudópodes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...